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A new three-dimensional numerical model is presented for prediction of propeller jet 
action from slowly maneuvering vessels. The non-hydrostatic free-surface model is based 
on the Reynolds averaged Navier-Stokes equations. The model is distinct from other 
known propeller jet models in that it describes fields of velocity, pressure, turbulence 
intensity and length scale in a given domain of arbitrary bottom and coastal topography. 
The results of simulations show good agreement with laboratory experiments in a tank 
with an inclined bottom (Schokking 2002) and field measurements with tug boats. It is 
concluded that the dynamic pressure gradient along the bottom can be a propeller wash 
factor that is comparable with bottom shear stress and can be responsible for stone 
displacement near the lowest part of the bottom slope where near-bottom velocities are 
not the largest. 

INTRODUCTION 
In coastal engineering practice, strong flows generated by vessel propulsion 

systems (propellers and water jets) are known to cause significant impact to 
aquatic habitat, re-suspension of contaminated sediments and loading on 
nearshore structures. These strong currents affect the quality of sediments in 
marine industrial areas, and in some cases are the design conditions for bank and 
slope protection near marine terminals. These common engineering problems 
motivated the development and testing of the 3D, non-hydrostatic free-surface 
Vessel Hydrodynamics Propwash Unsteady (VH-PU) model. The model 
simulates these vessel-induced flows and bottom and bank stability subjected to 
ship propeller jets. Most of the known propeller wash models (Blaauw and Kaa, 
1978; Fuehrer et al., 1987; Hamill, 1988; Verhey, 1983; Shepsis and Simpson, 
2001) use the self-similar dependencies for a stationary jet in an unbounded 
domain, corrected for bottom effects. The present model describes unsteady, 
three-dimensional fields of velocities generated by ship propellers, turbulence 
intensity and length scale in the given domain of arbitrary bottom and coastal 
topography. The temporally and spatially varying bottom shear stresses that 
caused bottom erosion and damage to bottom habitat are calculated, as well as 
forces due to pressures on submerged boundaries. The model was developed on 
the basis of the non-hydrostatic model of Kanarska and Maderich (2003). The 
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model version presented here allows calculation of hydrodynamic fields caused 
by propeller jets for stationary vessels with one or two propellers/jets. 

MODEL 

Basic equations 
The 3-D Reynolds-averaged continuity and Navier-Stokes equations (RANS 

equations) describing the turbulent motion under large Reynolds numbers can be 
written as follows: 

(1) 
dxt 

dut du. 1 dp 
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where x, = (x,y,z) are Cartesian coordinates, axis z is directed upward, Uj = 
(u,v,w) are components of mean velocity. The primed symbols indicate the 
fluctuations, u\ = (u',v',wf); p is pressure; g\ = (0,0,g) is gravity; p0 is constant 
density. The Reynolds stresses are modeled using the eddy viscosity approach 
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where eddy viscosity coefficient KM = S^l is related with kinetic energy of 
turbulence q2/2 and length scale /. Here Sy is the model constant and 8tJ is the 

Kronecker symbol. 
The model of turbulence is the q -q2l model (Vollmers and Rotta 1977; 

Mellor and Yamada 1982): 

Sq1 dq2 -rr du, d dq1 q' 
+ u = -2u.u h t> ql 2 . 
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(5) 

The last term in square brackets in (5) is a wall function, which is necessary in 

q2 - q2l model to correctly describe flow near the solid boundary. Here L is 

distance from the nearest solid boundary and K is von Karman constant. The 

constants of the turbulence models, = 17.14,5,' = 11.05, SM = 0.387, 

£, = 1.96, E2 = 1.33 ,Sq=S,= 0.566 were adopted from (Vollmers and Rotta 

1977). 
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Boundary conditions 
The kinematic boundary condition on the free surface z = r/(x, y, t) is 

dr\ 8TJ dr\ 
— + u h v — = w, (6) 

dt dx dy 

The boundary condition for horizontal velocity Vh ={u,v) is 

SK f 
dz P0 

where f = ( r ,T ) is wind stress. The non-slip boundary conditions were 
used for the velocity field at the solid boundaries. At the computational layer 
nearest to the boundary, the logarithmic layer relations were applied. 
Particularly, for the bottom at level z = -H + zh, the boundary conditions are 
taken in the form: 

dH dH 

ox dy 

XMf = ^- (9) 

dz p0 

Here the bottom shear stress Tb is specified by 

f f = o C \v\v C = '•b H^Dy \ y ' ^D 
U« z„+zo 

\ K V "o J 
where Zo is the roughness length, K is the von Karman constant. 

The relevant boundary conditions for equations (4)-(5) also are prescribed at 
the first computational level at the surface and solid boundaries. They are written 
for surface and bottom as 

(q2(0);q2 (0)/(0)) = (5,2/3
M.2(0);0), (10) 

(q2(-H);q\-H)l(-H)) = {B2llul(-H);Q), 

(11) 
where lit(0),u,(—H) are friction velocities at surface and bottom, 

respectively, «,2(0) = ? / p 0 and u„ (-H) = p 6 | / p 0 . 

At the open boundaries, two types of boundary conditions can be used: 
radiation conditions (Orlanski 1976) and boundary conditions based on the 
Newton relaxation technique. The computational domain is a closed area that is 
divided into an internal zone and relaxation zones along the open boundaries. 
The boundary conditions at the outer boundary of relaxation zones are non-slip 
conditions for the velocity field and zero level of turbulence. The modified 
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equation for surface elevation derived by the integration of continuity equation 
(1) from bottom to surface is 

dn 8u(H + n) dv(H + n) 77-77 
— + — - + — = - - — - * - a . (12) 
dt dx dy T 

The depth averaged velocity components are (w,v) . The right side of equation 
is the Newton relaxation term, where a is relaxation parameter, that is a = 1 at 
the outer boundary of relaxation zone and a = 0 in the internal zone, 77 is the 
prescribed elevation on the outer boundary and T is the relaxation time. Large 
viscosity and diffusivity Kr was added to the computed values in the relaxation 
zone. The relaxation time is a parameter chosen to satisfy non-reflecting 
conditions for disturbances entering into the relaxation zone. The advantage of 
this approach is that velocities are calculated from the hydrodynamic equations 
in the closed domain to satisfy the prescribed water level and viscosity in the 
relaxation zones. 

Discharge induced by vessel propulsion systems 
Detailed calculations of flow structures around propellers are a laborious 

task that is not considered in this paper. Instead a semi-empirical approach 
based on momentum theory (Blaauw and Van de Kaa 1978) was used to 
determine discharge generated by the propeller/jet. For slowly maneuvering 
vessels (the advance speed ~ 0) the discharge rate a single propeller Q is 

\TCKT , 

where D is the propeller diameter, n is a number of revolutions per second, 

KT is the thrust coefficient of propeller, {// = 2 for open wheels and y/ = 1 for 

Kort nozzles. According the momentum theory the free propeller jet is 

contracted to the diameter D0 = Dl at distance £0 = 0.5D from propeller 

whereas with a Kort nozzle the contraction is negligible and Dn « D. The 

corresponding velocity U2 is 

U2= 2= J "D (14) 

Zero flux of turbulent quantities was assumed through the propeller plane 

^ 1 = ̂  = 0, (15) 

where £ is coordinate in the propeller jet direction. 
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Numerical setup 
The numerical algorithm was implemented in the horizontal using a 

curvilinear orthogonal coordinate system. Transformation from the Cartesian 
coordinates into general vertical coordinates (Mellor et al. 2002) allows flexible 
and accurate description of the bottom topography. Two vertical system limit 
cases can be described: quasi-z-system of coordinates and terrain-following 
sigma-system of coordinates. The quasi z-system is most appropriate in the case 
of steep bottom topography with underwater structures whereas the sigma-
system is the best for smooth topography. 

Finite difference methods were used to solve 2-D equations for surface 
elevation and depth-averaged velocities (external mode) and 3D equations for 
velocity, pressure and the transport equations of the turbulence model (internal 
mode). The effective technique of decomposing the pressure and velocity fields 
into hydrostatic and non-hydrostatic components was used (Casulli, Stelling, 
1998; Kanarska, Maderich, 2003). The surface elevation, hydrostatic and non-
hydrostatic components of pressure and velocity are calculated at sequential 
stages. Unlike most non-hydrostatic models, the 2-D depth-averaged momentum 
and continuity equations were integrated explicitly, whereas the 3-D equations 
were solved semi-implicitly at subsequent stages. The finite-difference solutions 
of governing equations were derived using a four-stage procedure. 

In the first stage, the calculation of free surface elevation was performed 
explicitly from depth-integrated shallow water equations as in the hydrostatic 
POM model (Blumberg and Mellor 1987). To retain non-hydrostatic dynamics 
in the free surface field, the initial 2-D velocity fields on each external stage 
were determined by direct integration of the general non-hydrostatic 3-D 
velocity fields of the previous internal step. 

In the second stage, the 3-D hydrodynamic equations (without the non-
hydrostatic pressure component) were solved semi-implicitly with an internal 
time step to determine provisional values of the velocity field. The advection and 
horizontal viscosity were discretized explicitly. The three-diagonal system 
obtained through this process was solved by a direct method. 

In the third stage, the non-hydrostatic components of velocity were 
computed by correcting the provisional velocity field with the gradient of non-
hydrostatic pressure to satisfy the continuity equation for the sum of hydrostatic 
and non-hydrostatic velocities. The discretized Poisson equation obtained this 
way for the non-hydrostatic pressure was reduced to a non-symmetric 15-
diagonal linear system. The preconditioned biconjugate gradient method was 
used to solve this system. Once the non-hydrostatic pressure was determined, the 
corresponding components of the velocity fields were calculated. 

In the fourth stage, the scalar fields of turbulent energy and length scale 
were computed using a semi-implicit numerical scheme in the vertical direction. 
The three-diagonal system obtained this way was solved by a direct method. 
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Figure 1. Side view and dimensions of the experimental basin (Schokking 2002). 

SIMULATION OF LABORATORY EXPERIMENT 
Simulations of the impacts of a free propeller jet on an inclined bottom in 

the laboratory tank (Schokking 2002) were carried out. The experimental setup 
is shown in Figure 1. The tank has dimensions 2.0x1.9x0.48 m, with bottom 
slope 3H:1V. The bottom was covered by gravel with diameter 9.0 mm. A 
propeller with diameter D0 = 0.1 m was installed in depth 0.29 m within the 
barrier that divided the enclosed volume from the accessory volume in which 
water comes to balance level in both tanks. The excess of water flows away from 
the tank over both sidewalls. 

In the numerical simulations, the jet flowed out through the square hole with 
size 8.86x8.86 cm with an initial velocity of 1.38 m/s, which corresponds to the 
jet velocity and discharge in the experiment. At the lateral walls of the basin, the 
Newton relaxation boundary conditions were used. The grid resolution in the 
model was 101x101x39 using a sigma vertical coordinate system. Figure 2 
shows computed vertical velocity profiles along the jet axis compared with 
measurements in the steady-state flow. The model results agree with the 
experiments. The complicated structure of the velocity field is shown in Figure 3 
where longitudinal and transverse velocity fields are presented in two cross-
sections. At the cross-section nearest to the propeller (x - 0.5 m) over the 
horizontal bottom, the jet is already affected by bottom and has an elongated 
cross-section. At greater distance from the propeller (x = 0.95 m), the jet is 
spread over the slope with a strong transverse circulation caused by the bottom 
topography. 

N 

-0.4 -
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Figure 2. Computed vs. measured (Schokking, 2002) vertical distribution of mean 
velocities along the jet axis. 

x=0.95m 
Figure 3. Cross-sections of simulated velocity at x=0.5m (a) and x=0.95m. The 
isolines of longitudinal velocity component u and the arrows represent transverse 
velocities. 

Figure 4 shows the calculated normalized bottom shear stress 

6= S (16) 
g(Ps-Po)d 

for steady-state flow. Here ps is sediment grain density. The value \o\ = 9 is the 

non-dimensional Shields parameter (Shields 1936) that represents the ratio of 
shear stress force applied to the layer of grains to the stabilizing gravity force. As 
shown in figure the maximum of 6 is located around the point of intersection of 
the jet axis and the inclined bottom and along the side of the tank opposite the 
propeller. The majority of sediment transport models assume that sediment 
motion occurs when 8 exceed some critical value 6cr. In the experiment of 
Schokking (2002), tests were performed to investigate damage to the bottom 
covered by gravel with diameter 9 mm due to the propeller jet. The results of the 
experiment show that the maximum damage on the slope occurs on the lower 
part of the slope, approximately between 0 and 0.10 m above the toe (rectangle 
in Figure 4), and therefore shear stress force alone cannot be responsible for 
damage. Moreover the gravel motion in the lower part of the slope occurred in the 
normal or even opposite to the jet flow direction (Figure 5a). Schokking (2002) 
presumed that this damage is caused by the gradients in pressure forces. 
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Figure 4. Calculated normalized bottom shear stress 0 (a) and dynamic pressure 

gradient S for free propeller experiment. The dashed line shows toe of inclined 
bottom and rectangle shows zone of maximal damage (Schokking 2002). 
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Figure 5. Movement of stones in experiment of Schokking (2002) (a). Calculated sum 
of normalized bottom shear stress and dynamic pressure gradient (b) . The dashed 
rectangle corresponds to the area in (a). 
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The model allows us to quantify this hypothesis by calculating the 
normalized gradient of dynamic pressure S as: 

g(Ps-Po) 

The value S = \s\ is the non-dimensional Sleath parameter that was introduced 

by Sleath (1999) to characterize incipient motion of sediment under waves. 
Figure 4b shows that the experimentally determined zone of damage coincides 
with the computed zone of maximum values of S. The direction of gravel 
movement in the experiment (Figure 5a) agrees with the direction of the pressure 
gradient force shown in Figure 4b. 

Figure 5b shows vectorial sum of both forces acting on sediment, which is 
described by: 

§+~s = ±^p_ 
g(Ps-Po) 

It should be emphasized that the maximum propeller/jet current forces acting on 
inclined bottom slopes occurs on two sides on jet axis. Another zone of propeller 
wash is related with shallow near coast area. We conclude that in the future, 
sediment transport models should be modified by inclusion of a mechanism of 
pressure gradient-induced transport to properly describe erosion caused by 
propeller jets. 

SIMULATION OF FIELD EXPERIMENTS 
The VH-PU model was also preliminarily validated using a set of measured 

field current data from tug boat propwash. Figure 6 shows the test setup with 
Acoustic Doppler Current Profiler mounted on the bottom in approximately 10m 
water depth. The vessel position was tightly controlled with Differential GPS 
and precise correlation between gage and boat times were maintained. 

The simulations were carried out in a modeling domain 20x30 m with 
resolution in the sigma system of 101x91x40. Testing showed that precise 
control of the tug boat direction as it began moving away from the measurement 
site was critical, since at relatively short distances from the gauge (10m), small 
errors in vessel heading changed the location of the velocity jet, preventing the 
largest velocities from being measured by the ADCP. For testing runs where the 
tug position was well-controlled and the jet was directed over the ADCP, the 
simulations agree with the vertical distribution of mean velocities along the jet 
axis (Figure 7). The velocities shown in Figure 7 were generated by a tug vessel 
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with propeller diameter 1.83m, thrust 74,000 N, initial velocity 5.25 m/s with the 
propeller rotating at 200 RPM. 

Figure 6. Setup of field test. 

o 
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Figure 7. Vertical distribution of velocities along the jet axis at time=5 sec. The curve 
is VH-PU model computations, symbols are field measurements (2-second 
averages). 

EXAMPLE APPLICATION 
The VH-PU model has been successfully used on a number of projects in 

CA, WA, TX and LA. Ferry terminals in Puget Sound are often located adjacent 
to aquatic habitat or other marine resources, therefore upgrades and/or new 
construction of these terminals requires thorough analysis of propwash impacts 
to marine resources. Washington State Ferries (WSF) is planning to upgrade the 
terminal at Port Townsend, Puget Sound, WA. It was determined that eelgrass 
was present on the sea floor around the ferry terminal; therefore analysis of 
potential propeller wash impacts was initiated. 

# Experiment 
Modeling 



1232 COASTAL ENGINEERING 2006 

Figure 8 shows bottom velocities predicted by the VH-PU model for an 
Issaquah-class ferry landing at the terminal, as well as the locations of eelgrass 
and depth contours. The model's predicted bottom velocities were reasonable 
and the locations of high velocities corresponded to the locations where eelgrass 
was not present, i.e. velocities are above threshold for eelgrass survival. Model 
results were used to determine distinct areas of potential scour for various 
sediment sizes and areas of likely propeller wash damage to eelgrass. 

Other VH-PU model applications include evaluation of propeller-induced 
velocity on slopes at marine terminals for sizing rock slope protection, as well as 
evaluating bottom velocities due to propeller wash and required sediment sizes 
for capping of contaminated sediments. 

Figure 8. Bottom velocities generated by Issaquah-class ferry during landing at Port 
Townsend ferry terminal, Puget Sound, WA at simulation time = 116 sec. Also 
shown are bottom elevation contours, eelgrass locations and terminal and vessel 
locations. 

CONCLUSIONS 
A new three-dimensional non-hydrostatic free-surface numerical model VH-

PU based on the Reynolds averaged Navier-Stokes equations model was 
presented to predict action of the propeller jet of slowly maneuvering ship on the 
bottom and bank. The results of simulations show good agreement with the 
laboratory experiments in the tank with inclined bottom (Schokking 2002) and 
field measurements. The simulations confirm that damage to slope protection can 
be caused by combined action of the pressure gradient and shear stress. 
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